我们采用既定的TradFi衍生品定价理论来得出AMM自动化做市策略。 本文探讨了该技术的历史根源,并展示了我们如何将其应用于做市。 通过由此产生的定价机制,如果AMM保持平衡,交易者将面临较低的滑点。 如果AMM面临风险,滑点就会增加,并激励交易者对冲AMM净风险敞口。”

Untitled

Merton的债券定价模型(Merton,1974)假设公司有一定数量的到期日为T的债务。如果公司的资产价值在T时低于债务的面值,公司就会违约。在这个模型中,公司的权益是公司资产的欧式看涨期权,其行权价格等于债务的面值。这个模型可以用来预估公司的违约概率,正如Moody’s公司所商业化的KMV Merton模型[Bharat, Shumway, 2008],也可以用来定价公司的信用风险债务[Moody’s, 2022]。

继Merton在1974年发表的文献后,出现了其他的违约风险模型。在[Black, Cox, 1976]模型中,公司也可以在到期日T之前违约,而在Merton的方法中固定的违约阈值现在是动态的。特别是在90年代末信用衍生品的兴起,抽象出公司资产负债表的模型(称为简化模型),开始受到关注。关于结构模型和简化模型的详细内容,请参见附录A

结构模型和简化模型这两种方法,都是模拟违约风险和定价信用的有效方法。这两种模型都可以从历史数据进行校准,有时它们被结合成“混合”形式。当这些模型用于定价时,它们共同遵循的是风险中性估值原则。

风险中性估值

简而言之,这一原则表明,资产的价值等于期望的、贴现的现金流的价值。期望值不是使用真实世界的概率来计算的,而是使用从其他资产价格中提取出来的构造概率来计算的。关于这种估值方法还有很多内容可以展开,但就本文章而言,重点是知道这是衍生品的定价方法,如欧式看涨和看跌期权、CDS或结构化产品。对于我们与D8X合作的定量分析师来说,[Björk, 2009]是风险中性估值的一个较好的参考。

永续AMM面临市场风险

自动化做市商(AMMs)是订单簿市场的DeFi替代品。AMMs使用公式确定给定交易的价格,而不是在基于订单簿的系统中匹配限价和市价订单。

假设只有一个交易员在永续合约中做多1 ETH(例如参见[Deribit 2022]对永续合约的解释)。如果ETH的价格上涨20%,AMM欠交易员收益部分的金额。同样,如果价格下跌20%,AMM会减少交易员的保证金,以亏损的金额为准。简而言之,AMM面临市场风险。

如果有另一个交易员做空1 ETH,价格上涨20%,做空的交易员损失了20%,做多的交易员获得了20%,反之亦然,如果价格下跌20%。在这个例子中,AMM的市场风险抵消为零:无论价格如何变动,AMM都不会产生任何损失或收益。